The commercial pilot of the single-engine turboprop airplane reported that he was preparing to release
skydivers when he noticed that the engine torque indication was in the red arc. Specifically, the gauge
was indicating a torque of 70 pounds per square inch (psi) when it should have been indicating about 25
psi; the maximum allowed torque indication was 64.5 psi. The skydivers jumped uneventfully. As the
pilot was returning to the airport, the torque gauge was indicating 80 psi while the engine was at idle. At
that time, the pilot decided to perform a precautionary engine shutdown and land with no engine power.
During the landing, the airplane was fast and touched down about halfway down the 3,402-ft-long
asphalt runway. The pilot applied heavy braking, but the airplane traveled about 1,000 ft beyond the
departure end of the runway before coming to rest upright in a field with a collapsed left main landing
gear.
Category: 2015
According to the pilot of the tricycle landing gear equipped airplane, he was performing skydiving
operations. He reported that he felt rushed in performing his assigned duties because, “the skydiving
school kept wanting me to return quicker for the next load.” The pilot recalled that after dropping the
sky divers, he made his approach to land; the airplane ballooned during the flare, and landed hard on all
three landing gear. The airplane sustained substantial damage to the firewall.
The commercial pilot was returning the airplane to the departure airport for landing after a skydiving
flight. Two witnesses reported observing the pilot fly the airplane over the runway; one witness said it
was about 50 ft above ground level (agl), and the other witness said it was about 100 ft agl. One of the
witnesses added that, when the airplane reached the end of the runway, it pitched up about 45 degrees,
gained about 200 ft of altitude, and then entered a turn with a 45-bank angle. The witness added that,
after the airplane had turned about 90 degrees to a westerly heading, its nose dropped, and the airplane
“immediately dove.” The airplane subsequently entered a left spin and rotated about 180 degrees before
impacting trees and then the ground. A second witness noted that the engine sounded like it was at “full
throttle” during the descent as if the pilot was attempting to recover from the dive.
The pilot stated that he was conducting a skydiver “jump run”, and prior to letting the skydivers out the
radio squelch interrupter failed causing a constant static noise. After letting the skydivers out over the
airport the pilot set up the descent based on the winds acquired for the previous landing on runway 22.
As he circled for landing the manifold pressure indication “dropped off” to zero. The pilot was unsure if
he had a partial power loss or a gauge failure. He could not hear or feel the engine indications because of
the static noise on the radio squelch and descent profile, so he committed to a power off glide path for
his approach. The pilot stated that the airplanes approach speed was about 100 knots prior to the
threshold for landing. The airplane touched down beyond the threshold and as the pilot applied full
braking the airplane “ballooned” back into the air. The pilot attempted to stop the airplane but was
unsuccessful and exited the runway, coming to rest after colliding with a ditch.
On July 19, 2015, about 1515 universal coordinated time, a Cessna 206G, HC-CLR, was destroyed by collision with terrain during a forced landing following a loss of engine power during descent to Edmund Carvajal Airport (XMS), Macas, Santiago, Ecuador.
The commercial pilot was conducting a local skydiving flight with four skydivers. After the airplane
climbed to 3,800 ft, one of the skydivers deployed, and at 11,000 ft, the remaining three skydivers
deployed. The pilot stated that the procedure for deploying skydivers was to input 10° of flaps before the
skydivers’ deployment. After the last skydiver exited the airplane, the pilot closed the door and started to
retract the flaps from 10° to 0°. The pilot heard a “metallic” snap, and the airplane went into a spin. The
pilot recovered the airplane from the spin about 7,000 ft. He discovered that the right flap was partially
deployed about 5° down and appeared to be crooked in its track. In addition, he noted a vibration from
the right flap with restricted aileron control. The pilot stated that lateral control was difficult to maintain.
After a radio conference with a mechanic and about 30 minutes of trying to control the airplane, the pilot
chose to bail out of the airplane; he maneuvered the airplane over unpopulated farmland, shut down the
engine, and parachuted. The pilot watched the airplane circle after his parachute deployed. The pilot
landed and did not sustain injuries; the airplane impacted terrain and sustained substantial damage.
The pilot reported that the accident flight was his second skydiving flight of the morning and that the
airplane was performing “normally” as it had during the first flight. During climbout, he noted that the
engine cylinder head temperatures were in the “normal” range. When the airplane reached about 4,000 ft
mean sea level, the engine experienced a total loss of power, and, about 1 minute later, the propeller
stopped windmilling. The pilot conducted an off-airport landing to a nearby highway. During the
landing roll, and to avoid impacting vehicles on the highway, the pilot guided the airplane onto the
median, and the wings and horizontal stabilizer impacted several road signs, which resulted in
substantial damage to the airplane.
The commercial pilot reported that, during a skydiving flight, the engine experienced a total loss of
power during final approach for landing. The pilot initiated a forced landing to a field, and during the
landing sequence, the airplane impacted a tree.
No fuel was observed in the fuel tanks or fuel lines during recovery of the wreckage. Postaccident
examination revealed no mechanical failures or malfunctions that would have precluded normal
operation of the airplane. The company fuel log indicated that about 18.2 gallons of useable fuel were
onboard the accident airplane before the first flight of the day; the accident occurred during the third
flight.
The commercial pilot reported that he maneuvered back toward the airport to land after dropping
skydivers. During the approach for landing, about 1,000 ft above the airport, the engine experienced a
total loss of power. The pilot was unable to restart the engine and subsequently initiated a forced landing
to the desert floor.
The pilot reported that, during the postmaintenance test flight, the turboprop engine lost power. The
airplane was unable to maintain altitude, and the pilot conducted a forced landing, during which the
airplane was substantially damaged.
The engine had about 9 total flight hours at the time of the accident. A teardown of the fuel pump
revealed that the high-pressure drive gear teeth exhibited wear and that material was missing from them,
whereas the driven gear exhibited little to no visible wear. A metallurgical examination of the gears
revealed that the damaged drive gear was made of a material similar to 300-series stainless steel instead
of the harder specified M50 steel, whereas the driven gear was made of a material similar to the
specified M50 steel. Subsequent to these findings, the airplane manufacturer determined that the gear
manufacturer allowed three set-up gears made from 300-series stainless steel to become part of the
production inventory during the manufacturing process. One of those gears was installed in the fuel
pump on the accident airplane, and the location of the two other gears could not be determined. Based
on the evidence, it is likely that the nonconforming gear installed in the fuel pump failed because it was
manufactured from a softer material than specified, which resulted in a loss of fuel flow to the engine
and the subsequent loss of engine power.
A de Havilland DHC-6 Twin Otter airplane, N30EA, collided with another Twin Otter airplane, N70EA,
on the runway. The pilot of N30EA reported that, once she started the engines, the airplane rolled
forward and to the left 180 degrees because the steering-tiller had been positioned sharply to the left
when the airplane was last parked. The pilot stated that, when she applied the brakes, there was no
response, and the airplane subsequently collided with the right wing of N70EA. The pilot of N30EA
reported that, after the collision, she noted that the hydraulic circuit breaker was open; this would have
resulted in insufficient hydraulic pressure to control the parking or pedal brakes. The pilot of N30EA
said that she should have noticed that the hydraulic circuit breaker was open before she started the
engines because it was part of the Before Starting Engines checklist.