The commercial pilot was conducting a cross-country flight to deliver the airplane to a maintenance
facility. The airplane departed with full fuel tanks. The pilot stated that, as the airplane neared the
planned fuel stop airport, he thought that there was adequate fuel remaining to reach the maintenance
facility, so he did not stop to refuel and continued to the destination. About 4 hours 23 minutes into the
flight, which was past the expected fuel exhaustion time of about 4 hours 18 minutes (assuming a fuel
burn of 50 gallons per hour, which the pilot used for his initial flight planning), the pilot declared an
emergency and advised an air traffic controller that the airplane was out of fuel. The controller provided
information to the pilot about nearby airports, but the airplane would not have been able to reach any of
them, so the pilot initiated a forced landing to a field. Before touchdown in the field, the pilot descended
to avoid power lines ahead, but the airplane hit one of the lines. The airplane touched down in the field,
impacted an embankment, and came to rest upright on a road. The airplane sustained substantial
damage.
Category: 2017
The pilot was conducting parachute jump operations near the airport. After climbing to altitude, he
released his jumpers and returned to land. The pilot reported that, during the landing flare, the airplane
struck the runway nosewheel first. He added that the airplane bounced, floated down the runway, and
then settled to the right of the runway.
The pilot reported that he departed for a parachute jump flight with 12 gallons of fuel onboard. He added
that, after the parachute jumpers exited the airplane about 10,500 ft mean sea level (msl), he initiated a
left spiraling descent back to the airport. He further added that he “heard and felt the engine start [to]
quiet down as if it was shutting down.” He then began to make right descending turns and verified that
the fuel selector was in the “both” position. He added that the cylinder head temperature was decreasing,
so he switched back to left descending turns and that the “fuel starvation due to banking happened two
more times.”
The commercial pilot was on the second leg of a postmaintenance flight. The first flight leg, which was
about 1-hour long, was uneventful, and the pilot reported that the fuel selector was positioned to the
right tank during this flight leg. He landed the airplane but did not purchase fuel before departing for the
return leg. The pilot reported that, during the return leg, the fuel selector was positioned to the left tank.
While on final approach to the airport, the pilot added power to go around. He turned onto the crosswind
and then downwind legs of the airport traffic pattern, and while on the downwind leg, the engine lost all
power. The pilot switched the fuel selector to the right tank, but engine power was not restored.
Realizing that the airplane would be unable to reach the runway, the pilot conducted a forced landing in
trees, and the airplane came to rest inverted.
According to the pilot, he landed the airplane on the 1,800-ft-long asphalt runway in the rain at 70 mph
with full flaps. He reported that, on final, he had considered conducting a go-around due to wind and
weather, but “we were low, slow, and 130 pounds below maximum gross weight with very dynamic
wind conditions at the time and …apartment buildings about 400 yards beyond the end of runway 19.”
During the landing, he touched down with a right crosswind, about 600 ft beyond the runway threshold.
The pilot of the twin-engine, turbine-powered airplane reported that, while providing flights for
skydivers throughout the day, he had a potential new hire pilot flying with him in the right seat. He
added that, on the eighth flight of the day, the new pilot was flying during the approach and
“approximately 200′ [ft.] south from the threshold of [runway] 15 at approximately 15 feet AGL [above
ground level] the bottom violently and unexpectedly dropped out. [He] believe[d] some kind of wind
shear caused the aircraft [to] slam onto [the] runway and bounce into the air at a 45 to 60-degree bank
angle to the right.” The prospective pilot then said, “you got it.” The pilot took control of the airplane
and initiated a go-around by increasing power, which aggravated the “off runway heading.” The right
wing contacted the ground, the airplane exited the runway to the right and impacted a fuel truck, and the
right wing separated from the airplane. The impact caused the pilot to unintentionally add max power,
and the airplane, with only the left engine functioning, ground looped to the right, coming to rest nose
down.
The pilot reported that, during the takeoff roll, the airplane encountered a wind gust and veered left off
the runway centerline. He added that the airplane became airborne but that he did not have “enough
time” to avoid a parked helicopter. Subsequently, the left wing impacted the helicopter. He then reduced
the engine power, and the airplane landed without further incident.
On the fourth skydiving flight of the day, the commercial pilot climbed the airplane to 10,000 ft mean
sea level (msl), and after the last jumper had departed the airplane, the pilot initiated a steep left turning
descent. When the airplane was at 3,000 ft msl, the engine lost total power. The pilot was unable to
restart the engine and turned the airplane to land on the runway, but when he realized that it would not
be able to reach the runway, he landed in a field short of the approach end of the runway. During the
ground roll, the airplane nosed over and then came to rest inverted. The fuselage and wings sustained
substantial damage.
The private pilot was landing the airplane at the conclusion of a cross-country flight when the engine
experienced a total loss of power in the airport traffic pattern. The pilot attempted to restart the engine
without success and subsequently landed the airplane in a field, where it impacted a fence and irrigation
equipment. The pilot stated the right fuel tank was selected at the time of the accident. Postaccident
examination revealed that the right tank contained 14 to 15 gallons of fuel, and that the left fuel tank
contained about 1 gallon of fuel. The fuel selector was in the right tank position. The engine functioned
normally during a postaccident test run. Given the lack of engine anomalies, it is likely that the airplane
was operating on the left tank at the time of the accident, and the loss of engine power was the result of
fuel starvation; it is likely that the pilot moved the fuel selector to the right tank position during his
attempt to restart the engine.
The pilot in the tricycle-gear-equipped airplane reported that he landed about 4 ft short of the asphalt
runway. The nose landing gear struck the 6-inch-high asphalt perimeter and separated from the airplane.
The pilot aborted the landing, the airplane bounced, and the pilot established a climb. He completed one
traffic pattern and an approach. During the second landing, the pilot chose to land on the turf safety area
parallel to the runway. When the airplane’s main landing gear touched down on the turf surface, the
airplane nosed over. The airplane sustained substantial damage to the firewall, fuselage, left wing, and
empennage.